Some variational formulas on additive functionals of symmetric Markov chains
نویسندگان
چکیده
منابع مشابه
Convergence of symmetric Markov chains on Z
For each n let Y (n) t be a continuous time symmetric Markov chain with state space n −1 Z d. Conditions in terms of the conductances are given for the convergence of the Y (n) t to a symmetric Markov process Yt on R d. We have weak convergence of {Y (n) t : t ≤ t0} for every t0 and every starting point. The limit process Y has a continuous part and may also have jumps.
متن کاملAn Invariance Principle for the Law of the Iterated Logarithm for Additive Functionals of Markov Chains
In this paper, we prove Strassen’s strong invariance principle for a vector-valued additive functionals of a Markov chain via the martingale argument and the theory of fractional coboundaries. The hypothesis is a moment bound on the resolvent.
متن کاملThe Law of the Iterated Logarithm for Additive Functionals of Markov Chains
In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.
متن کاملOn Semi-martingale Characterizations of Functionals of Symmetric Markov Processes
Abstract For a quasi-regular (symmetric) Dirichlet space (E ,F) and an associated symmetric standard process (Xt, Px), we show that, for u ∈ F , the additive functional u∗(Xt) − u∗(X0) is a semimartingale if and only if there exists an E-nest {Fn} and positive constants Cn such that |E(u, v)| ≤ Cn‖v‖∞, v ∈ FFn,b. In particular, a signed measure resulting from the inequality will be automaticall...
متن کاملAn Almost Sure Invariance Principle for Additive Functionals of Markov Chains
We prove an invariance principle for a vector-valued additive functional of a Markov chain for almost every starting point with respect to an ergodic equilibrium distribution. The hypothesis is a moment bound on the resolvent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2001
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-01-06308-0